
V

"AD-A283 91811111111111111111111111

Searching for a Mobile Intruder in a Corridor-
The Open Edge Variant of the Polygon Search Problem*

David Crass
Department of Electrical Engineering and Computer Science

University of Wisconsin - Milwaukee
P.O. Box 784, Milwaukee, WI 53201, U.S.A.

davidcccsd4. csd. uwm. edu

Ichiro Suzuki
Department of Electrical Engineering and Computer Science

University of Wisconsin - Milwaukee
P.O. Box 784, Milwaukee, WI 53201, U.S.A.

suzuki'cs .uwm. edu (0
ELEC TE Masafumi Yamashita
AUG 3 0 1994 Department of Electrical Engineering

Faculty of Engineering
Hiroshima UniversityF Kagamiyama, Higashi-Hiroshima 724, Japan

makcse .hiroshima-u. ac. jp -

To appear in
Iinternational Journal of Computational Geometry and Applications /

1994 '

Abstract The polygon search problem is the problem of searching for mobile intruders in
a simple polygon by a single mobile searcher having various degrees of visibility. This paper
considers the "open edge" variant of the problem in which the given polygon P must be
searched without allowing undetected intruders to reach a given edge u, under an additional
assumption that any number of intruders can leave and enter P through another edge v at
any time. One may view P as representing a corridor with two open exits u and v, and the
task of the searcher is to force all the intruders out of P through v (but not u). We present
a simple necessary condition for a polygon to be searchable in this manner by the searcher
having a light bulb, and then show that the same condition is sufficient for the polygon to
be searchable by the searcher having two flashlights. The time complexity of generating a
search schedule is also discussed.
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1 Introduction

Problems related to visibility inside a simple polygon have been the subject of many recent
papers. Of particular interest to us among these problems is the watchman route problem
[2] [3], which is an interesting variation of the well-known art gallery problem of stationing
guards in a simple polygon so that every point in the interior of the polygon will be visible
from at least one guard [4] [8]. The goal of the watchman route problem is to construct a
shortest tour within a given simple polygon so that every point in the interior of the polygon
will be visible from at least one point on the tour. Note that this goal can be interpreted
as (constructing a path for) finding stationary intruders located in the polygon by a single
mobile searcher.

Detection of mobile intruders in a simple polygon was first considered in the searchlight
scheduling problem [9] in which the rays of stationary searchlights are used to find the
intruder. The use of a mobile searcher having various degrees of visibility for detecting
mobile intruders was then considered as the polygon search problem in [11] where a number
of necessary conditions and sufficient conditions for the given polygon to be searchable by
various searchers are presented. The goal of this paper is to discuss an interesting variant
of the polygon search problem.

We adopt the following formalism given in [11]. Both the searcher and the intruders
are represented as a point that can move continuously within the given polygon P, and
the intruders are assumed to be able to move arbitrarily faster than the searcher. For each
integer k > 1, the k-searcher is the searcher having k flashlights whose visibility is limited
to k rays emanating from his position, where the directions of the rays can be changed
continuously with bounded angular rotation speed. The oo-searcher is the searcher having
a light bulb who can see in all directions simultaneously at any time. (A searchlight used in
[9] is equivalent to a stationary 1-searcher.) We say that a point or an intruder is illuminated
at the given time if either (1) it is hit by one of the rays of the k-searcher, or (2) it is visible
from the position of the oo-searcher. A schedule of the k-searcher is a sequence of the
following elementary actions:

1. Aim a flashlight at the given point.

2. Rotate a flashlight either clockwise or counterclockwise to illuminate the given point.

3. Move over a segment, aiming each flashlight either in the given fixed direction, or at
or through the given point.

A schedule of the oo-searcher for P is simply a polygonal path within P over which he
moves. A point x E P is said to be contaminated at time t during the execution of a
schedule, if it is possible for an intruder, by some motion over time, to be at x at t without
being illuminated at any time t' such that t' < t. A point that is not contaminated is said to
be clear. A region Q C P is clear if every point in Q is clear; otherwise, it is contaminated.
A schedule for P is called a search schedule if P is clear at the end of the execution. P is
said to be k-searchable (or oo-searchable) if there exists a search schedule of the k-searcher
(or oo-searcher) for P. For formal definitions of these concepts, see [11]. (We do not include
an action of "moving while rotating the flashlights in some arbitrary manner," since any
such action can be broken down into smaller parts, each of which can be "simulated" using
some sequence of the elementary actions. We omit the details.)
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As was observed ir [11], one of the reasons for the difficulty of deciding whether a given
polygon P is k-searchable or xc-searchable is that some vertices and edges of P may have to
be recontai ýed repeatedly during the search. This observation suggests us to consider a
restricted x of the polygon search problem in which some vertices or edges of P must
remain cle.. ,aring the search. Specifically, the problem we consider in this paper is the
following.

Given P and two edges u and v of P, clear P under the following condition B:
(1) u must remain clear throughout the search, and (2) at any time, any point
on v that is not illuminated is considered to be contaminated.

A possible interpretation of this requirement is that (1) P represents a corridor with two
open exits u and v, (2) any number of intruders can leave and enter P through v at any
time, and (3) the searcher must force all the intruders cut of P through v without allowing
any of them to reach u. For v "ersion of the problem we present a necessary condition
for P to be oo-searchable, A•t ,how that the same condition is also sufficient for P
to be 2-searchable. Therefore. as •'-,r as this variant is concerned, the 2-so'archer and thb
oo-searcher have the same capabihi.

One application of the result presen'-d in this paper is the problem of searching a
"multi-level art gallery" consisting of a number of levels of floors (simple polygons) in
which every pair of adjacent floors are conneceed •y a staircase whose entrances are located
on the respective polygon boundaries. Note that the top and b-)ttom floors have only one
entrance, and the intermediate floors have two entrances. One can ea•;ly show that to search
such a structure, the searcher must proceed from the bottom to thn top (or from the top
to the bottom) clearing one floor at a time, in such a way that the i .'ruders will not move
to the lower floors that have already been searched. This means tnat every intermediate
floor must be cleared in such a way that (1) the entrance to the staircase to the lower floors
remains clear, and (2) the intruders are forced out to the upper floors through the entrance
to the other staircase. Since the floors are simple polygons and the entrances are their
edges, searching any intermediate floor of a multi-level art gallery is exactly the open edge
polygon search problem considered in this paper. (Searching the bottom and top floors
having only one entrance seems to be much harder than searching the intermediate floors
having two entrances. Formally, the one-en,.rance problem is obtained from the open edge
problem stated above by dropping the condition that edge u must remain clear during the
search.)

In the rest of this paper, unless otherwise stated, P is an n-sided simple polygon,
u = VZ7Ji is the edge of P that should remain clear during the search, and and v = 'LVR is
the edge of P whose points are assumed to be contaminated whenever it is not illuminated.
We assume that UL, VL, VR and uR appear in this order clockwise in the boundary &P of
P.

2 A necessary condition

Two points x and y E P are said to be mutually visible if T C_ P. We let V(x) denote the
set of points in P that are visible from a point x, and define V 2 (x) = UJEv(x) V(y). Note
that V(x) C V 2 (x). If y E V2 (x), then we say that y is link-2-visible from x. For regions Q
and R C P, we say that Q is weakly visible (or weakly link-2-visible) from R if every point
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Figure 1: w is visible from x; v is link-2-visible from z; y and z are separable from w and
link-2-separable from x.

in Q is visible (or link-2-visible) from some point in R. (In this definition, if R consists of
a single point p, then we simply say that Q is visible (or link-2-visible) from p.) For points
x, y and z E P, y and z are said to be separable (or link-2-separable) from x if every path
within P between y and z contains at least one point in V(x) (or V2(x)). Note that since P
is simple, y and z are separable (or link-2-separable) from x iff ir(y, z) contains at least one
point in V(x) (or V 2 (X)), where ir(y,z) is the Euclidean shortest path within P between y
and z. See Figure 1 for illustration.

For points x: and y E OP, we let OPL(x, y) denote the portion of OP from x to y taken
clockwise (i.e., the "left" boundary of P from z to y). Similarly, we let 9PR(x, y) denote
the portion of OP from x to y taken counterclockwise (i.e., the "right" boundary of P from
x to y). 19PL(UL, VL) and DPR(UR, vR) are simply written as aPL and OPR, respectively.
For convenience, we use "<" to denote the order in which the points in OPL(UL, VL) (or
DPR(UR, vR)) appear in a traversal from UL to VL (or from UR to vR).

For vertices x E OPL and y E OPR, we say that x and y are in conflict with :espect to
u if (1) UL and x are not link-2-separable from y and (2) uR and y are not link-2-separable
from x. Similarly, x and y are said to be in conflict with respect to v if (1) vL and x are not
link-2-separable from y and (2) vR and y are not link-2-separable from x. See Figure 2. We
say that u (or v) is conflict-free if there do not exist such vertices that are in conflict with
respect to it. Finally, we say that u and v satisfy the weak link-2-visibility condition if aPL
is weakly link-2-visible from 7r(uR, VR) and 9PR is weakly link-2-visible from 7r(uL, VL).

Theorem 1 If P is oo-searchable under condition B, then (1) u is conflict-free, (2) v is
conflict-free, and (3) u and v satisfy the weak link-2-visibility condition.

Proof (1) Suppose that x E OPL and y E OPR are in conflict with respect to u. Then since
UR is illuminated at time zero and x V V 2 (UR), x is contaminated at time zero. Similarly, y
is contaminated at time zero. If x is illuminated before y at time t, then y and UR are not
separable from the position of the oo-searcher at t, and hence UR becomes contaminated.
Similarly, if y is illuminated before x, then UL becomes contaminated. Thus P cannot be
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Figure 2: x and y are in conflict with respect to u; x' and y' are in conflict with respect to
V.

cleared without contaminating u. (2) Suppose that x E 9PL and y E OPR are in conflict
with respect to v. When x is illuminated, y is contaminated since (a) VR is not illuminated
(and hence is contaminated by assumption) and (b) VR and y are not separable from the
location of the oo-searcher. Similarly, x is contaminated when y is illuminated. Therefore x
and y cannot become clear simultaneously. (3) Suppose that x E OPL is not link-2-visible
from lr(uR, VR). Then UR becomes contaminated when x is illuminated, since (a) VR is
not illuminated (and hence is contaminated by assumption) and (b) VR and UR are not
separable from the location of the oo-searcher. Similarly, UL becomes contaminated when
y E aPR not link-2-visible from Wr(UL, VL) is illuminated. 0

3 Sufficiency

The following theorem, together with Theorem 1 and an obvious fact that any 2-searchable
polygon is k-searchable for any k > 3 and oo-searchable, shows that the condition given in
Theorem 1 is in fact necessary and sufficient for P to be searchable under condition B by
the k-searcher for any k > 2 and the oo-searcher.

Theorem 2 If (1) u is conflict-free, (2) v is conflict-free, and (3) u and v satisfy the weak
link-2-visibility condition, then P is 2-searchable under condition B.

In the rest of this section, we prove Theorem 2. Assume that the conditions of the
theorem are satisfied.

Let us denote the two flashlights by FL (the "left" flashlight) and FR (the "right"
flashlight). Suppose that the 2-searcher is located at point s E P, aiming FL and FR at
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Figure 3: Sweeping P by C at Yyy keeping BELOW(xz y) clear.

points x E OPL and y E OPR, respectively. Intuitively, we view the polygonal chain x
as a variable-length two-link chain C determined by the rays of the flashlights, and clear P
by sweeping it by 1r from u to v (i.e., C coincides with edges u and v at the beginning and
end, respectively), in such a way that at any time, the subregion of P "below" £ remains
clear. While we do so, we keep C straight as much as possible, bending it at the position
of the 2-searcher only when we clear the regions not visible from the opposite boundary.
See Figure 3. In the following, for points x E OPL and y E OPR that are mutually visible,
we denote by BELOW(x, y) the subregion of P "below" -yy, i.e., the region determined by
T-- and that portion of OP from x to y taken counterclockwise. Note that BELOW(x,:y)
contains edge u that must remain clear.

We need the following definitions found in [7]. A chord of P is a line segment within
P whose endpoints are both in OP. For a convex vertex x of P that is adjacent to a reflex
vertex x', let c be the chord given as the segment between x' and the first hit point in OP
of the ray emanating from x through x'. We say that c is induced by x. (Each such x can
induce up to two chords.) Chord c divides P into two subpolygons, and the one containing
x is called the component of c and denoted by P(c). Let D be the set of chords induced by
such vertices x. Chord c E D is said to be redundant if there exists another chord c' E D
such that P(c') _ P(c). Let C C D be the set of nonredundant chords. The set C provides
useful information for generating a search schedule, since obviously no searcher can clear P
unless he visits P(c) for every c E C. It is known [7] that C can be constructed in O(n log n)
time for an n-sided polygon P, using the bullet shooting algorithm of [5] and a modified
version of an algorithm given in [10]. (Bullet shooting is the problem of finding the first
point in OP hit by the ray emanating from the given point in P in the given direction.)

Now, we denote by CL (or CR) the set of chords c E C such that both endpoints of c
are in OPL (or OPR). It is easy to see that if C intersects every chord c E CL U CR during
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Figure 4: CL, a(CL), O(CL), CR, a(CR) and NC(CR).

the sweep, then every point in P will become visible from the 2-searcher at least once and
hence, can be illuminated by one of the flashlights. In fact, we sweep P by repeatedly
finding a suitable "next" chord c E CL U CR and advancing £ so that it intersects c.

For each chord c E CL U CR, let q(c), B(c) and T(c) be the convex vertex inducing c
and the "bottom" and "top" endpoints of c, respectively, where B(c) < q(c) < T(c). (See
Figure 4.) Suppose that currently, £ is at Yyy for some x E OPL and y E OPR. First, we find
the chord cL E CL whose B point is encountered first in a "forward" traversal of aPL(X, VL)
from x to VL. (If such CL does not exist, then we treat vertex VL as a chord such that
B(VL) = T(VL) = vL. A similar comment applies to CR mentioned next.) We find CR E CR
in a similar manner. Clearly, either CL or cR must be the next chord to be intersected by £.
To decide which of the two chords should be intersected next, we do the following. For CL,
let a(CL) be the first point, encountered in a "forward" traversal of OPR(Y, VR) from y to
VR, from which at least one point in CL is visible, if such a point exists; otherwise, let a(CL)
be the first point, encountered in a "backward" traversal of OPR(UR, y) from y to UR, from
which at least one point in CL is visible. (Such a(CL) always exists, since u and v satisfy
the weak link-2-visibility condition.) Then let p be the point in CL closest to B(CL) visible
from a(CL), and let fl(CL) E OPL be the first point at which the ray emanating from a(CL)
through p penetrates OP. (Note that a(CL) and /3 (CL) are defined relative to x and y.)
Again, see Figure 4 for illustration. Note that £ will coincide 1(CL)a(CL) if we advance it
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V(C ) 3 (cR)
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a (CR) a(cL)

U

Figure 5: ?7(CL) and 77(CR) are in conflict with respect to v.

without bending, with "minimum" movement, until it intersects CL. (We say "minimum,"
since for £ to intersect CL, the right endpoint of £ must move from y to a(cL) at least.) We
also define c'CR) E OPL and 3(CR) E tPR for CR in a completely symmetrical manner.

Lemma I The conditions a(cL) < y and a(cR) < x cannot hold simultaneously.

Proof If a(CL) < y and a(cR) < x, then iq(CL) and i7(cR) must be in conflict with respect
to v (see Figure 5). This contradicts the assumption. 0

So in the following, assume that at least one of y :_ a(cL) and x <- a(cR) holds. There are
two cases.

Case 1: y !_ a(CL) and x _< a(cR).
In this case, we have the following lemma.

Lemma 2 At least one of a(cR) -_ B(cL) and a(cL) •_ B(CR) holds.

Proof If B(CL) < a(cR) and B(CR) < a(CL), then 7i(CL) and rl(cR) must be in conflict with
respect to u (see Figure 6). This contradicts the assumption. 0
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Figure 6: 27(CL) and I;(cR) are in conflict with respect to u.
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Algorithm 1:
begin

C,,- pute lr(y,i*(cL)) sls 2 . . n where s, = y, Sin = 3(CL), none of s.,. I ,s,,Y 1S

in OPL(/3(CL), VL), and no three consecutive points in sl,. .ssn are collinear;
for i:= 1 to n- I do

if s, E OPR and s,+l E OPR then
begin

x, := SHOOT(s,,,s,+j);

LA DVA NCEBYSWEEP(xj);
RADVANCEFROMLID(sj+,); {£ is at x-sj 1 .}

end
else if s, E dPR and s,+i E OPL then LADVANCEBYSWEEP(si+,); {I is at s.}

else if s, E 0 PL and sj+j E OPR then RADVANCEBYSWEEP(si+1 ); {f is at s .}
else {si E dPL and s,+1 E oPL}

begin
Xi := SHOOT(s,+i,s,); {Xm.- = SHOOT(s,,s,,_) = a(CL)}
RADVANCEBYSWEEP(zi);
LADVANCEFROMLID(s1 ,+); {£ is at s,+pr.}

end;
end;

Figure 7: Algorithm A for advancing f- from Ty- to /(CL)a(CL).

If a(cL) < B(cR), then we advance C to C(CL)a(cL) so that it intersects CL. (Otherwise,
a(cR) < B(CL) holds by Lemma 2, and we advance f to a(cR)1(cR) so that it intersects
cR. This is a symmetric case, and thus we omit the details.) This is done by algorithm
A shown in Figure 7. Algorithm A is written using the following four operations and
SHOOT, where SHOOT(r,s) is the first point at which the ray emanating from point r
through point s intersects 0P. In the following explanations, assume that C is currently at
Y-- and BELOW(x, y) is clear.

1. LADVANCEFROMLID(z): z is a point in OPL(X, VL) such that (1) z, x and y are
collinear and (2) i9PL(x, z) is weakly visible from Y. See Figure 8. The 2-searcher
moves to x aiming FL and FR at x and y, respectively, and then clears the region
whose boundary is oPL(x, z) UE-z by sweeping OPL(x, z) using FL, while moving along
the "lid" T-z of the region and aiming FR continuously at y. This is possible since
OPL(x, z) is weakly visible from z-!-. When this is done, 1 is at Y and BELOW(z, y)
is clear.

2. RADVANCEFROMLID(z): This is symmetric to LADVANCEFROMLID(z),
and can be used to advance E to T-•.

3. LADVANCEBYSWEEP(z): z is a point in OPL(X,VL) such that (1) z E V(y)
and (2) OPL(x,z) is link-2-visible from y. See Figure 9. The 2-searcher moves to y
aiming FL and FR at x and y, respectively, and then sweeps OPL(Z,z) from "pivot"
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Figure 8: Illustration for L-ADVANCEYFROM.LID(z).

Figure 9: illustration for L-ADVA NCEJ3Y-SWEEP (z).



y using FL, in such a way that each time FL is advanced to the "lid" of a portion
of OPL(x. z) not visible from y, he, while aiming FR continuously at y, (1) moves to
the lid aiming FL at the lid, (2) sweeps the portion by FL using the method given
in L-ADVANCEFROMLID, and then (3) returns to y aiming FL at the lid. This
is possible since aPL(x, z) is link-2-visible from Vj. When this is done, £ is at . and
BELOW(z, y) is clear.

4. RADVANCEBYSWEEP(z): This is symmetric to LADVANCE-BYSWEEP(z),
and can be used to advance £ to Tz.

The process of advancing L by algorithm A is illustrated in Figure 10.

Lemma 3 The four operations used in algorithm A can always be executed successfully.

Proof Since u and v satisfy the weak link-2-visibility condition, any region cleared by
LADVANCEFROMLID and RADVANCEFROMLID is weakly visible from its "lid."
So these two operations can always be executed successfully. For LADVANCE-BYSWEEP
and RADVANCEBYSWEEP, we need to show that any region cleared by either of them
is weakly link-2-visible from the "pivot" of the sweep (e.g., point y of Figure 9). But this
indeed is the case, since by the way cL, is selected, (1) there are no chords in CL between x
and B(CL), and (2) there are no chords in CR between y and a(cL). 0

Case 2: a(CL) < y or Q(cR) < x.
Suppose that a(CL) < y holds. (The argument for the case a(cR) < x is similar, and is
thus omitted.) Then we advance £ from Ty- to /(cL)a(CL) as follows. See Figure 11 for
illustration. Let q be the intersection of Yyy and /3(CL)a(cL). Here, 0PL(x,I3(cL)) is link-
2-visible from q, since otherwise, there must exist a chord in CL between x and B(CL),
contradicting the way cL is selected. Thus we move the 2-searcher to q aiming FL and
FR at x and y, respectively, and then sweep OPL(X, O(CL)) from q using FL by a method
similar to LADVANCEBYSWEEP with pivot q, with a slight modification that (1) FL
and FR are aimed in opposite directions whenever the 2-searcher is located at q, and (2)
FR is aimed through q whenever the 2-searcher is not located at q. Since FR is rotated only
clockwise, BELOW(13(CL), a(CL)) becomes clear when the sweep is completed. Note that
the right endpoint of L has been moved backward from y to a(CL). Thus we refer to this
case as a back-up case.

Note that the endpoints of £ are moved backward toward u only when a back-up case
occurs, and a back-up case can cause some chords to be selected more than once as the next
chord to which C is advanced. However, we have the following lemma.

Lemma 4 A chord to which L is advanced and that generates a back-up case can never be
selected again as the next chord to which C is advanced.

Proof Suppose that a chord, say cL E CL, generated a back-up case when £ was advanced
to it. Assume that cL is selected again later as the next chord to which £ is advanced. Then
there must have been another back-up case that brought the left endpoint of f- to a point
below B(cL). If that back-up case was caused by a chord cR E CR such that a(cL) < B(cR),
then r7(cL) and r/(cR) must be in conflict with respect to v (see Figure 5). Otherwise, by an
elementary analysis, we can show that there must exist chords c'l E CL and cR E CR such
that q(c'.) and 77(cR) are in conflict with respect to v (see Figure 12). In either case, the
assumption that v is conflict-free is violated. 0
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Figure 10: Advancement of £ from Y = u to 3(CL)a(CL) by algorithm A of Fig-
ure 7. 1, 3, 5: LADVANCE-BYSWEEP; 2, 4: RADVANCEYFROMLID; 6, 8:
R-ADVANCE-BYSWEEP; 7,9: L-ADVANCEFROMLID.
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Figure 11: Advancement of 1 from T to 3(CL)ar(CL) in a back-up case.
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Figure 12: 77(c') and 77(cR) are in conflict with respect to v.
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By Lemma 4, there can be only O(n) back-up cases during the entire sweep, and hence
each chord in CL U CR can be selected as the next chord to which L is advanced only O(n)
times. (End of Case 2)

Therefore, eventually L is advanced to v = VLvR, and P becomes clear. This completes
the argument for proving Theorem 2.

4 Time complexity

For arbitrary vertices x, y and z of P, y and z are not link-2-separable from x iff y and z
belong to the same maximal connected region of P - V2(x). This condition can be tested
for any given vertices x, y and z in constant time, once we construct V2(x) for e vertex x
and find, for each vertex y V V 2(x), the maximal connected region of P - V2( aining
y. Since V2(x) can be constructed in O(n) time for each vertex x from a triang, )n of P
[10], where n is the number of vertices of P, whether there exist vertices that are in conflict
with respect to u or v can be tested in O(n 2) time. Since whether u and v satisfy the weak
link-2-visibility condition can also be tested in 0(n 2 ) time by constructing V2(x) for each
vertex x, we can test whether P satisfies the condition of Theorem 2 in O(n 2) time.

Theorem 3 If P satisfies the condition of Theorem 2, then a search schedule of thý 2-
searcher consisting of O(n 2 ) elementary actions for clearing P under condition B can be
generated in O(n 2 log n) time.

Proof First, we construct the sets CL and CR in 0(nlogn) time [7] [10]. Then we sort, in
0(nlog n) time, the B ("bottom") endpoints of the chords in CL (or CR) in the order they
appear in OPL (or OPR). The sorted lists of the B endpoints allow us to determine, each
time C is advanced to a new location, the next chord (forward of 1) on each side of P in
O(log n) time. Next, we add the T and B endpoints of the chords in CL U CR to the vertex
set of P (if they are not vertices), and compute a triangulation of P using the extended
vertex set. This can be done in O(n) time [1]. From this triangulation, we construct, in
linear time, a data structure given in [5] that solves the bullet shooting problem in O(log n)
time per query. Also, for each vertex of the extended vertex set of P, we construct, in linear
time, a data structure given in [5] that allows us to compute the Euclidean shortest path
from the vertex to an arbitrary point in P in O(log n + m) time, where m is the number of
segments in the path. The total time needed for the preprocessing of P described above is
0 (n log n).

Let us first discuss the case in which no back-up case occurs. Let M be the number
of times that 1 is advanced to the next chord, where M = O(n). Consider the i-th time
when L is advanced, where currently L is at iyy. We first find the next chords CL E CL and
CR E CR forward of 1 in O(log n) time. Then we compute two shortest paths r(y, B(cL))
and r(y, T(CL)) from the data structure we constructed, and obtain the points a(CL) and
/O(cL) by (1) examining where the two shortest paths separate from each other and (2) using
the O(logn) time bullet shooting algorithm. We obtain the points a(cR) and /3(cR) in a
similar manner, and then determine the next chord to which 1 is advanced in additional
constant time.

When the next chord, say CL, is determined, we use algorithm A to generate a schedule
of the 2-searcher. Note that the shortest path 7r(y, /(cL)) that we use in algorithm A has in
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effect been computed when we obtained /3(CL). Clearly the length of the schedule is linear in
the number m of vertices between Yyy and /(CL)a(CL), and the schedule itself can be gener-
ated in 0(m log n) time by (1) bullet-shooting from some of these vertices, (2) triangulating
each of the regions swept by L-ADVANCEJBYSWEEP and RADVANCEBY-SWEEP
(to find the subregions not visible from the pivot of the sweep in additional linear time),
and (3) processing each of the vertices in constant time a constant number of times. Since
there are no back-up cases, during the M times C is advanced, each vertex of P appears
only a constant number of times in the shortest paths that are constructed and in the M
schedules that are generated. Thus the total time needed for constructing the shortest
paths is O(Mlogn + n) = O(n log n), and the additional time needed for generating the
M schedules is O(n log n). Therefore the total time needed to generate the entire schedule,
whose length is obviously O(n), is O(n log n) (including the O(n log n) time preprocessing).

Now assuLre that back-up cases can occur. Clearly the length of the schedule in a back-
up case for a chord, say CL E CL, is linear in the number of vertices between x and 1(CL),
and the schedule itself can be generated by processing each such vertex in constant time
a constant number of times after triangulating the region to be swept and obtaining the
subregions not visible from the pivot of the sweep. Also, by using an argument similar to
that given above, we can show that the length of the schedule between consecutive back-up
cases and the time needed to generate it are 0(n) and O(n log n), respectively. Therefore,
since there can be only O(n) back-up cases (as we discussed in the previous section), the
length of the entire schedule and the time needed to generate it (including the preprocessing)
are O(n 2) and 0(n 2 log n), respectively. 0

The length of the schedule generated in the proof of Theorem 2 is asymptotically worst-
case optimal, as is shown in Example 1.

Example 1 Consider the n-sided polygon P shown schematically in Figure 13, where
m E O(n) is even. We show that any search schedule of the oo-searcher for P under condition
6 contains fQ(n 2) elementary actions. Note that (1) for each 2 < i < m, V(cj),...,V(ci_j)
must be clear when the searcher visits V(ci), and (2) since V(dl),..., V(dm) become con-
taminated when the searcher visits V(ci) for even i, the searcher must first visit each-of
V(dj),..., V(d,) each time he visits V(cj) for odd j. Thus each of V(dl),..., V(dm) must
be visited m/2 times before V(cl),..., V(cn) become clear simultaneously. Since m E O(n),
this implies that any search schedule must contain ýI(n 2) elementary actions. 0

5 Concluding Remarks

We have considered the open edge variant of the polygon search problem. We have shown
that the 2-searcher has the same capability as the ac-searcher in this problem, and presented
a simple necessary and sufficient condition for the existence of a search schedule. We
have also presented an algorithm for generating a search schedule and discussed its time
complexity.

As a final note, we remark that the "two guards problem" considered in [61 in which
one moves two guards from vertices u to v of a polygon along the two boundary chains
determined by u and v in such a way that they always remain mutually visible, is closely
related to searching the given polygon using a single 1-searcher (having one flashlight)
under the assumption given in this paper. Clearly, if there exists a schedule for the two
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guards, then the 1-searcher can search the polygon by behaving as one guard and aiming the
flashlight at the position of the other guard. It is not clear whether the converse is also true,
since the beam of the flashlight can move backwards "jumping over a dent," whereas the two
guards must always move "smoothly" over the polygon boundary. However, we conjecture
that any schedule for the 1-searcher can be converted to that for two guards, since it seems
unlikely that a polygon that requires such backward moves can actually be searched by the
1-searcher using a different schedule. Studying the capability of the 1-searcher, as well as
the challenging problem of generating a schedule for any searcher in the one-entrance case
mentioned in Section 1, are suggested for future research.
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